Hadronisation Corrections to the Inclusive Jet Cross Section

R. Lefèvre, M. Martínez, O. Norniella

Introduction

Goal: Corrected NLO for Underlying Event and Fragmentation in order to get a fair comparison to data

NLO ×
$$\frac{\sigma \text{ (Hadron Level - Pythia Tune A with MPI)}}{\sigma \text{ (Parton Level - Pythia Tune A no MPI)}}$$

About beam remnants in Pythia

- · Composition defined by incoming (before ISR) parton
- P_T just compensate P_T of incoming (before ISR) parton
- Can not be clearly isolated at hadron level (String Fragmentation)
- · Easy to isolate at parton level
 - Mother = p or \overline{p}
 - Do not radiate or interact (Except for MPI: MPI products also easy to identified at parton level \rightarrow Mothers = 0)

Beam-Beam remnants composition

(Pythia Tune A - min P_T = 3 GeV/c - 100000 events)

Beam-Beam remnants P_T spectrum

(Pythia Tune A - min $P_T = 3 \text{ GeV/c} - 100000 \text{ events}$)

Removing the beam-beam remnants to the parton level clusterisation

Why

Beam-beam remnants themselves have a small but non-null contribution even in the central region (quark type remnants)

In our case, should be removed because not included in NLO

How

Reminder

Clusterisation at parton level with Pythia require development version of Calor package

Edit Calor/src/SourceHEPGPythiaPartons.cc

In the loop storing the partons to be clusterised, add the requirement: jmo1hep!=1 && jmo1hep!=2

MC samples

Makes use of 162.5 millions events

- Official 5.3.3 Pythia Dijet Sample (19.5M)
- Samples generated for Jet Shape studies (28M)
- Samples generated by Giuseppe (6M)
- Additional samples especially generated (109M)

Convergence study only

⊗ Convergence only above ~ 50 GeV/c

→ no correction provided here below

Number of events (Millions)

$\min \hat{P}_T$	with MPI	no MPI
3	10	10
5	10	10.5
7	10	10
10	11	10.5
18	14.3	5.5
40	8.2	5.5
60	5	5.5
90	5.5	5.5
120	4	2.5
150	3.5	2.5
200	3	2.5
300	1	1.5
400	1	1.5
500	1	1.5

Correction decomposition

 $(K_T - D=0.7)$

Global Correction for Central Jets

Global Correction vs. Rapidity

 $(K_T - D=0.7)$

© Small rapidity dependency

Results on Central Jets with K_T

All Data up to COT compromised period

- 263 pb⁻¹
 - Datasets Od (last Calorimeter Calibrations)
 - Version 5.3.3_nt of Zvertex module
- Still 4.9.1 MC
 - Jet Energy Corrections / Unfolding
 - Systematic as for blessing: still 5% on Jet Energy Scale...
- Corrected NLO calculations (bug found in previous calculations)

Not show here but already in hand

- Full Od datasets (~ 400 pb⁻¹)
- · New MC

Now Working on reduction of systematic

Plan: final results blessed and PRL draft by Moriond

What about plots blessed in April?

Old Plots with a bug in NLO calculations

Proposed updated plots (Only NLO changed)

